All Colors Hydrogen Generator (SMR, ACS)

PANASIA

Intro

PANASIA is a trustworthy solution provider to environmental regulations

Maritime GHG Emission Regulations

The International Maritime Organization (IMO) has introduced rules aimed as GHG emissions from ships.

Source : DNV GL

| Maritime GHG Emission Regulations

Hydrogen Generation System

Hydrogen Generation System

| PanaGen Line-up

Line up		PanaGen ™- 30	PanaGen ™- 100	PanaGen ™- 250	PanaGen ™- 500	PanaGen ™- 2300
Output(product)						
Droduct(U2)Flow	Nm3/hr	~30	~	~	~	~2300
Product(H2)Flow	kg/day	~60	~200	~500	~1000	~4600
Purity	%vol			<mark>99.999</mark>		
Pressure	bar.g	~6.5	~6.5	~6.5	~6.5	~20
Electricity generati	on					
Power Source			380VA0	C 3phase 60Hz		
Electricity	kWh	~14	~30	~60	~150	~300
Dimensions						
	Meter	6.2 x 2.4 x 3.4	6 x 3 x 3.5	8.5 x 3 x 3.5	14 x 3.2 x 3.8	15 x 25x 18
Size(WxDxH)			H : Vent Sta	ck Height Excluded		

Applications

Hydrogen Station

Fuel Cells

Chemical Industry

Photovoltaics

Ships

LEDs

H2 Gas Turbine

Fuel Cells

PanaGen System Diagram

Specifications

Feed Gas	Drossuro	Product(H2)				
	Pressure	Capacity	H2 Purity	Pressure		
Natural Gas	8.5~30bar.g	Customized	99.999%	20 bar.g		

PanaGen System Diagram

Low Pressure System for High Purity SMR

Specifications

Feed Gas	Drossuro	Product(H2)				
	Pressure	Capacity	H2 Purity	Pressure		
Natural Gas	0.3 bar.g	Customized	80%	ATM		

| R&D Status

30Nm3/h Hydrogen Generation System

Item	Value	Unit	Remark
Efficiency			
Reformer(CH4 conversion)	85	%	
WGS(CO conversion)	90.00%	%	
PSA(H2 recovery)	85	%	
Output (product)			
	~30	Nm3/hr	
Normal output	~60	kg/day	
Hydrogen Purity	~99.999	%	
Pressure	~6.5	bar.g	
Typical Consumption data			
NG flow	~12	Nm3/hr	
NG Pressure	9~10	bar.g	
DI Water	33	L/hr	
Comp. Air	Required		
Electricity	14	kWh	
Dimensions			
Size(LxWxH)	6.2 x 2.4 x 3.4	Meter	For experiment
Weight	14,000	Kg	For experiment

Mid-small SMR system for Industrial use

< Burner/Dummy Test >

< PSA >

< Reformer >

| R&D Status

250Nm3/h Hydrogen Generation System

ltem	Value	Unit	Remark
Efficiency			
Reformer (CH4 conversion) WGS(CO conversion) PSA(H2 recovery)	85 90.00% 85	% % %	
Output (product)			
Normal output	~250 ~500	Nm3/hr kg/day	
Hydrogen Purity	~99.999	%	
Pressure	~6.5	bar.g	
Typical Consumption data			
NG flow NG Pressure DI Water Comp. Air	~100 9~10 250 Required	Nm3/hr bar.g L/hr	
Electricity	~60	kWh	Estimated
Dimensions			
Size(LxWxH)	8.2 x 3 x 3.5	Meter	Estimated

Application
Industrial Mid-small SMR system for H2 gas station

Reference - Joint Development Project for E/Fuel Cell vessel

Engine : 4stroke LNG mixed with hydrogen engine Hydrogen generator : PANASIA CCUS : PANASIA Fuel cell : TBD COL LING HOOVERS HYDROGEN-powered by LING

Hydrogen Generation System

| How to produce Green Ammonia

Renewables

PanaGen System Diagram

Vaporizer

The process of vaporizing liquefied ammonia, converting it into gas, and preheating the gas for a efficient reaction.

3 Cooler

The process of cooling generated gas at room temperature to prepare for the purification process.

Specifications

2 Ammonia Cracker & Burner

The process by which ammonia decomposes into nitrogen and hydrogen through the decomposition of ammonia gas. $(2NH_3 \rightarrow N_2 + 3H_2)$

4 Purification (PSA & TSA)

The process of separating and absorbing non-reactive ammonia and the generated nitrogen to increase the purity of hydrogen.

*TSA(Temperature Swing Absorption : Unreacted NH3 treatment *PSA(Pressure Swing Absorption) : Increase H2 purity

Feed Gas	Pressure	Product(H2)				
		Capacity	H2 Purity	Pressure		
Ammonia	~10 bar.g	Customized	Above 99.97-8% (NH ₃ <0.1 ppm)	6 bar.g		

5Nm³/h & 50Nm³/h NH₃ Cracking System

Туре	5Nm3/h NH4 Cracking System	50Nm3/h NH3 Cracking System
Cracking type	High Pressure	High Pressure
H ₂ Capacity	5.0Nm3/h	50Nm3/h
H ₂ Purity	Above 99.97-8%	Low : above 99.97-8%
Residual NH ₃ concentration	Below 0.1 ppm	Below 0.1 ppm

5 Nm³/h NH₃ Cracking System

- Performance Satisfied -

5 Nm³/h NH₃ Cracking System

| Heat distribution sample

Features of NH₃ Cracking System Heat distribution sample

5 Nm³/h NH₃ Cracking System Test Result

Class looks into rule set up

Fig 1.1 Components of Typical Fuel Cell Power Installation

^r Busan Ammonia Eco-Energy Business J 50 Nm³/h NH₃ Cracking System Manufacturing / Task

Assignment Period	2022.01.01 ~ 2023.12.31
Host / Participant	PANASIA / 11 Companies(KR, Lotte Chemical, Dong il shipyard, etc.)
Subject	Ammonia based Fuel cell Hybrid Eco-friendly Ship Test (100t)

| Panasia competitiveness

50Nm³/h Ammonia Cracking System

Being tested at 2nd Factory, completion in Aug. 2023

Ammonia Cracker & Fuel Cell System for Vessels

Vinssen & Panasia Sign MOU for

Hydrogen Fuel Cell Propulsion System for Vessel

Vinssen and Panasia announced on the 2nd that they have signed a business agreement on a hydrogen fuel cell propulsion system for environmentally friendly ships.

As a result, the two companies promised mutual cooperation in various fields, including research into electric propulsion systems for environmentally friendly ships, promotion of joint projects, public relations, and human resource development.

In addition, Vinssen plans to develop a hydrogen fuel cell power system for large vessels by adding Panasia's ammonia hydrogen extractor to the hydrogen fuel cell module and to proceed with type approval. Ammonia has a higher energy density than liquid hydrogen, and is known to be suitable for large ships because it liquefies at -33°C compared to liquid hydrogen cooled to -253°C. Last year, the International Energy Agency (IEA) also chose ammonia as the most efficient method of transporting hydrogen.

A Vinssen official said, "If the two companies, which have strengths in environmentally friendly technology, meet and the completed hydrogen fuel cell power generation system for large ships completes the formal approval process, South Korea's environmentally friendly ship technology will dominate the global market." I can lead," he said. It will also lead to the revitalization of the shipbuilding industry, which has become a major industry.

| System Flow (PSA exclude)

| System Flow (PSA include)

| On-going Fuel Cell Power System In Maritime Projects

Hydrogen Power Application On the Sea : Overseas

Deep Water Solution (Floating)

CASE STUDY

1. Oil Carrier

2. 115K Class_Crude Oil Tanker(LR2)

3. 50K PC(MR)

CASE 1_MPV Concept Ammonia Cracking System 400Nm3/hr Fuel Cell Power System 500kw N2 VAPORIZER LPG TANK L-NH3 TANK (ϕ) N2 TANK La na LPG TANK N2 VAPORIZER H2 BUFFER TANK L-NH3 TANK

CASE 1_MPV

				-
Ammonia Cracker Medel	PSA Include		PSA Exclude	
Ammonia Cracker Model	ACSP 400	ACSP 800	ACST 400	ACST 800
Anhydrous Ammonia Input (kg/hr)	296	594	235	472
Anhydrous Ammonia Input Pressure (bar)	9.5	9.5	9.5	9.5
Anhydrous Ammonia Input Temperature (°C)	20	20	20	20
Product Gas Output (Nm3/hr)	416	832	588	1176
Product Gas Output Pressure (bar)	6	6	6.6	6.6
Product Gas Output Temperature (℃)	60	60	60	60
H2 Purity (%)	99.7	99.7	75	75
Product Gas Capacity (Nm3/hr) - H2	414.75	829.5	441	882
- N2	1.25	2.5	147	294
Power Consumption (kwh)	20	35	15	25
Explosion proof class	Ex d II C T1	Ex d II C T1	Ex d II C T1	Ex d II C T1
Dimensions (mL x mW x mH) _ NH3 Cracker	8.6 x 2.4 x 3.8	12 x 2.8 x 4.2	6 x 2.4 x 3.6	8.5 x 2.8 x 4

| CASE 2_50K PC(MR) - ACS

Concept

Ammonia Cracking System 6,000Nm3/hr

Fuel Cell Power System 7.5MW

2ND DECK

Ammonia Cracker

3RD DECK

| CASE 2_50K PC(MR) - ACS

Concept

Ammonia Cracking System 6,000Nm3/hr

Fuel Cell Power System **7.5MW**

2ND DECK

Ammonia Cracker Model	ACST 6000 D	ACSP 6000 D	ACST 6000 R	ACSP 6000 R
Anhydrous Ammonia Input (kg/hr)	3559	4332	3559	4332
Anhydrous Ammonia Input Pressure (bar)	15.5	15.5	15.5	15.5
Anhydrous Ammonia Input Temperature (°C)	20	20	20	20
Product Gas Output (Nm3/hr)	8865	6063	8865	6063
Product Gas Output Pressure (bar)	10.8	10.3	10.8	10.3
Product Gas Output Temperature (℃)	60	60	60	60
H2 Purity (%)	75	99.7	75	99.7
Product Gas Capacity (Nm3/hr) - H2	6648	6045	6648	6045
- N2	2216.25	18.19	2216.25	18.19
Power Consumption (kwh)	80	100	80	100
Explosion proof class	Ex d II C T1	Ex d II C T1	Ex d II C T1	Ex d II C T1
Dimensions (mL x mW x mH) _ NH3 Cracker	5.1 x 5 x 10.6	5.1 x 5 x 10.6	8 x 3.2 x 6.4	8 x 3.2 x 6.4

| CASE 3_115K Crude Oil Tanker(LR2) - ACS

Concept Ammonia Cracking System 12,000Nm3/hr + Fuel Cell Power System 15MW

B - DECK

0.0

A - DECK

E/R 2RD DECK (16,080 A/B)

E/R 3RD DECK (10,820 A/B)

| CASE 3_115K Crude Oil Tanker(LR2)

Concept Ammonia Cracking System 12,000Nm3/hr + Fuel Cell Power System 15MW

B - DECK

A - DECK

| CASE 3_115K Crude Oil Tanker(LR2)

Ammonia Cracker Model	ACST 12000 D	ACSP 12000 D	ACST 12000 R	ACSP 12000 R
Anhydrous Ammonia Input (kg/hr)	7083	8663	7083	8663
Anhydrous Ammonia Input Pressure (bar)	15.5	15.5	15.5	15.5
Anhydrous Ammonia Input Temperature (°C)	20	20	20	20
Product Gas Output (Nm3/hr)	17640	12127	17640	12127
Product Gas Output Pressure (bar)	10.8	10.3	10.8	10.3
Product Gas Output Temperature (℃)	60	60	60	60
H2 Purity (%)	75	99.7	75	99.7
Product Gas Capacity (Nm3/hr) - H2	13230	12090	13230	12090
- N2	4410	37	4410	37
Power Consumption (kwh)	150	185	150	185
Explosion proof class	Ex d II C T1	Ex d II C T1	Ex d II C T1	Ex d II C T1
Dimensions (mL x mW x mH) _ NH3 Cracker	12.5 x 5 x 10.6	12.5 x 5 x 10.6	10.3 x 7.7 x 6.8	10.3 x 7.7 x 6.8

| R&D Facility

H₂ Production Technology R&D Center

Reforming System Test Bed (5, 30, 50, 250Nm3/h)

- * SMR for house & building
- * H_2 gas station, H_2 power plant

- * Gases
- * Air
- * etc..

Control & Analysis Room

- * System control/test * Gas Monitoring & Analysis
- * G/C analysis(purity)

CCS Test Bed

- * Amine type CCS
- * SMR CCS
- * Multi-absorber tower

Test Barge

Test barge (14m x 44m , WT 344ton)

- * Ballast system
- * De-SOx, SCR system
- * CCS system

5L 23/30H STX MAN Engine

- * 650kW
- * 720 rpm
- * Diesel / HFO Operating

Control Room * Engine & CCS system

Control

DeSOx Scrubber * CCS quenching tower

Panasia competitiveness

Technology Independence

Cost reduction by localizing

PSA development

Catalyst development

Sequence optimization for high purity

- PSA sequence improvement
- PSA line up(30, 100, 300, 500 Nm3/hr)

Key element of Reforming process

- Obtaining Core technology
- Nickel : Mid/Large size of SMR
- Ruthenium : Small SMR or ACS system

Membrane technology

All in one type(WGS, PSA, Chiller etc.)

- Energy saving (850->400~450 Degree C.)
- CO2 Capture for high concentration

Smart control center

- Real time monitoring
- Fault diagnosis
- Big data based replacement alarm
- Troubleshooting

Different color, same goal

